

ICAM26

International Conference on Advanced Manufacturing

Research to Application through Standardization

ORLANDO, FL
SEPTEMBER 28 - OCTOBER 2, 2026

Value Chain: Sinter-Based AM Technologies

amcoe.org/icam2026

SYMPOSIUM CO-ORGANIZERS

Iñigo Agote
TECNALIA Research & Innovation, Spain

Animesh Bose
Shaping Innovations, USA

Efrain Carreño-Morelli
University of Applied Sciences and Arts Western Switzerland, Switzerland

Amy Elliot
Oak Ridge National Laboratory, USA

Simon Höges
GKN Additive, Germany

Thomas Weißgärber
Fraunhofer IFAM, Germany

ASTM STAFF CONTACT

Richard Huff
ASTM International

Sinter-Based Additive Manufacturing (SBAM) is transforming the production landscape by offering superior resolution, enhanced surface finishes, and a broader material palette compared to traditional fusion-based processes. By decoupling the shaping and densification steps, SBAM technologies—including Binder Jetting (BJT), Material Extrusion (MEX), Material Jetting (MJT), and Vat Photopolymerization (VPP)—promise lower production costs and expanded industrial applications. Despite its high potential, the path from a “green” part to a fully dense, high-performance component involves complex debinding and sintering cycles. This symposium explores the latest advancements across the SBAM value chain, the emergence of hybrid and multi-material processes, and the standardization required to reach the industry’s next inflection point.

Topics of interest include but are not limited to:

Process & Technology Innovation

- Novel SBAM Developments: Hybrid additive/subtractive processes, 3D screen printing, and multi-material printing.
- Frontend Advancements: Innovative feedstock, binder chemistry, and high-speed printing techniques.
- Post-Printing Operations: Specialized depowdering, debinding, and sintering strategies.

Materials & Performance

- Material Science: Microstructure evolution, mechanical properties, and densification kinetics.
- Quality & Precision: Dimensional control, surface roughness optimization, and post-processing.
- Feedstock Management: Handling, conditioning, and powder reuse considerations.

Industrialization & Design

- Application Case Studies: Successes, failures, and “lessons learned” in industrial adoption.
- Design for SBAM (DfSBAM): New design rules specific to sinter-based constraints.
- Economics & Sustainability: Cost modeling, EHS (Environmental, Health, and Safety) impacts, and lifecycle analysis.

Digitalization & Standards

- Modeling & Simulation: Digital twins of the sintering process and predictive distortion modeling.
- Process Control: In-process monitoring and real-time feedback loops.
- Certification: Qualification of machines, processes, and parts; closing the gap in international standards.